Equivalent Thermal Boundary Simulation Methods for High-altitude Unmanned Aerial Vehicles Based on Space Environment Simulators

CHEN Yichen, LI Xiyuan, GAO Wen, WANG Jiewen, TAO Dongxing, YANG Xiaoning

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 52-61.

PDF(2672 KB)
PDF(2672 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 52-61. DOI: 10.7643/ issn.1672-9242.2025.10.007
Aviation and Aerospace Equipment

Equivalent Thermal Boundary Simulation Methods for High-altitude Unmanned Aerial Vehicles Based on Space Environment Simulators

  • CHEN Yichen, LI Xiyuan, GAO Wen, WANG Jiewen, TAO Dongxing, YANG Xiaoning*
Author information +
History +

Abstract

In order to solve difficulties in the thermal design verification of high-altitude unmanned aerial vehicles (UAVs) operating in the complex stratospheric environment, the work aims to propose an equivalent simulation method of external convective heat transfer based on a space environment simulator. A finite-node heat transfer model was established by analyzing heat exchange mechanisms among the UAV, environment, and internal equipment under both flight and test conditions. Based on the dimensionless number analysis, the temperature deviations in internal equipment caused by scaling methods were obtained, achieving results consistent with CFD simulations. Simulation analysis revealed that the temperature variations of equipment induced by scaled testing were correlated with factors such as the heat flux density of internal equipment, installation configurations, and feature sizes, while exhibiting negligible dependence on variations in external solar heat flux. The scaling-induced temperature deviations in internal equipment remained below 10 ℃ under typical flight conditions, meeting requirements for UAV thermal model verification. The study concludes that Nusselt number-equivalent wind speed scaling enables effective simulation of forced convective heat transfer in space environment simulators for verifying UAV thermal control designs, with dimensionless analysis confirming natural convective heat transfer deviations below 10 ℃ under typical flight conditions. This methodology provides valuable references for formulating ground thermal testing strategies and selecting testing approaches for high-altitude UAVs.

Key words

high-altitude unmanned aerial vehicles / thermal boundary equivalent simulation / space environment simulator / Nusselt number / wind speed scaling / similarity criterion

Cite this article

Download Citations
CHEN Yichen, LI Xiyuan, GAO Wen, WANG Jiewen, TAO Dongxing, YANG Xiaoning. Equivalent Thermal Boundary Simulation Methods for High-altitude Unmanned Aerial Vehicles Based on Space Environment Simulators[J]. Equipment Environmental Engineering. 2025, 22(10): 52-61 https://doi.org/10.7643/ issn.1672-9242.2025.10.007

References

[1] 成珂, 王忠伟, 周洲. 太阳能飞机工作条件对太阳能电池性能的影响[J]. 西北工业大学学报, 2012, 30(4): 535-540.
CHENG K, WANG Z W, ZHOU Z.Exploring Effects of Solar-Powered Airplane Operating Conditions on Solar Cell Performance[J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 535-540.
[2] 李念思, 刘小勇, 李亮, 等. 无人机锂离子电池高低温极端环境适应性研究[J]. 中国安全科学学报, 2020, 30(8): 177-182.
LI N S, LIU X Y, LI L, et al.Research on Environmental Adaptability of Lithium-Ion Battery Used in UAV under Extreme High and Low Temperature[J]. China Safety Science Journal, 2020, 30(8): 177-182.
[3] 戴德鑫. 临近空间下永磁同步电机流热耦合场问题的研究[D]. 哈尔滨: 哈尔滨理工大学, 2023.
DAI D X.Study on Fluid-Heat Coupling Field of Permanent Magnet Synchronous Motor in Near Space[D]. Harbin: Harbin University of Science and Technology, 2023.
[4] ORTEGA C B.Thermal Management of Electrical Systems in a Solar-Electric Stratospheric HALE[C]// AIAA AVIATION 2022 Forum. Virginia: AIAA, 2022.
[5] 邢栋. 某型无人机动态温度场分析与热模型修正[D]. 哈尔滨: 哈尔滨工业大学, 2017.
XING D.Dynamic Temperature Field Analysis and Thermal Model Modification of a UAV[D]. Harbin: Harbin Institute of Technology, 2017.
[6] 周忆梦, 梁世哲, 赵创新, 等. 无人机电子设备舱热环境仿真分析[J]. 航天器环境工程, 2024, 41(2): 144-150.
ZHOU Y M, LIANG S Z, ZHAO C X, et al.Thermal Environment Simulation Analysis of UAV Electronic Equipment Cabin[J]. Spacecraft Environment Engineering, 2024, 41(2): 144-150.
[7] 刘沛清, 马蓉, 段中喆, 等. 平流层飞艇螺旋桨地面风洞试验[J]. 航空动力学报, 2011, 26(8): 1775-1781.
LIU P Q, MA R, DUAN Z Z, et al.Ground Wind Tunnel Test Study of the Propeller of Stratospheric Airships[J]. Journal of Aerospace Power, 2011, 26(8): 1775-1781.
[8] STOLL A M.Comparison of CFD and Experimental Results of the LEAPTech Distributed Electric Propulsion Blown Wing[C]// 15th AIAA Aviation Technology, Integration, and Operations Conference. Texas: AIAA, 2015.
[9] 焦俊. 临近空间螺旋桨电推进系统试验体系构建与优化方法研究[D]. 西安: 西北工业大学, 2019.
JIAO J.Research on Test System Construction and Optimization Method of Propeller Electric Propulsion System in Near Space[D]. Xi'an: Northwestern Polytechnical University, 2019.
[10] MERRISON J P, FIELD D, FINSTER K, et al.The Mars Simulation Laboratory, University of Aarhus[C]// Exo-/ Astro-Biology, ESRIN. Frascati: ESA, 2001.
[11] ANYOJI M, NUMATA D, NAGAI H, et al.Pressure-Sensitive Paint Technique for Surface Pressure Measurements in a Low-Density Wind Tunnel[J]. Journal of Visualization, 2015, 18(2): 297-309.
[12] CHAMBERLIN R.The Altitude Wind Tunnel (AWT) - a Unique Facility for Propulsion System and Adverse Weather Testing[C]// 23rd Aerospace Sciences Meeting. Virginia: AIAA, 1985: 314.
[13] BOORER N W.Barnes Wallis—Designer (1887-1979)[J]. The Aeronautical Journal, 1981, 85(849): 414-429.
[14] BURLEY R R, HARRINGTON D E.Experimental Evaluation of Honeycomb/Screen Configurations and Short Contraction Section for NASA Lewis Research Center's Altitude Wind Tunnel[R]: Woshington: NASA Lewis Research Center Cleveland, 1987.
[15] BLAHA B, SHAW R.The NASA Altitude Wind Tunnel - Its Role in Advanced Icing Research and Development[C]// 23rd Aerospace Sciences Meeting. Reno, NV. Reston, Virginia: AIAA, 1985: 90.
[16] ANYOJI M, NOSE K, IDA S, et al.Development of a Low-Density Wind Tunnel for Simulating Martian Atmospheric Flight[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2011, 9: 21-27.
[17] 戚大威. 模拟平流层环境加载试验风洞研制[D]. 上海: 上海理工大学, 2013.
QI D W.Development of Wind Tunnel for Simulating Stratospheric Environment Loading Test[D]. Shanghai: University of Shanghai for Science & Technology, 2013.
[18] 高庆华, 李鹏, 刘佳彬, 等. 火星车有风热平衡试验环境模拟技术[J]. 航天器环境工程, 2019, 36(6): 594-600.
GAO Q H, LI P, LIU J B, et al.Thermal Environment Simulation Technology of Mars Rover Wind Thermal Balance Test[J]. Spacecraft Environment Engineering, 2019, 36(6): 594-600.
[19] 李国强, 吴霖鑫, 姜裕标, 等. 高空低温低气压模拟试验装置研制[J]. 低温工程, 2024(1): 1-11.
LI G Q, WU L X, JIANG Y B, et al.Development of a High-Altitude Low-Temperature and Low-Pressure Simulation Test Device[J]. Cryogenics, 2024(1): 1-11.
[20] 中国人民解放军总装备部. 中国参考大气(地面~80 km): GJB 5601—2006[S]. 北京: 中国标准出版社, 2006.
General Armaments Department of the People's Liberation Army. China Reference Atmosphere (Ground~80km): GJB 5601—2006[S]. Beijing: Standards Press of China, 2006.
[21] 杨晓宁, 杨勇. 航天器空间环境工程[M]. 北京: 北京理工大学出版社, 2018: 61-65.
YANG X N, YANG Y.Space Environment Engineering for Spacecraft[M]. Beijing: Beijing Insititute of Technology Press, 2018: 61-65.
[22] 童靖宇, 向树红. 临近空间环境及环境试验[J]. 装备环境工程, 2012, 9(3): 1-4.
TONG J Y, XIANG S H.Near Space Environment and Environment Tests[J]. Equipment Environmental Engineering, 2012, 9(3): 1-4.
[23] 王晶, 高庆华, 李西园, 等. 一种用于平流层环境模拟的电机系统: CN114329839A[P].2022-04-12.
WANG J, GAO Q H, LI X Y, et al. A Motor System for Stratospheric Environment Simulation: CN114329839A[P].2021-12-31.
[24] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001.
TAO W Q.Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001.
[25] 闵桂荣. 卫星热控制技术[M]. 北京: 宇航出版社, 1991: 513-529.
MIN G R.Satellite Thermal Control Technology[M]. Beijing: China Astronautic Publishing House, 1991: 513-529.
[26] 方荣生, 方德寿. 科技人员常用公式与数表手册[M]. 北京: 机械工业出版社, 1991: 257.
FANG R S, FANG D S.Handbook of Essential Formulas and Tables for Technical Professionals[M]. Beijing: China Machine Press, 1991: 257.
[27] ISO. ANSI/AIAA. Space Systems—Design Qualification and Acceptance Tests of Small-Scale Satellite and Units Seeking Low-cost and Fast-delivery: ISO/TC 20/SC 14 N 1004[S]. Geneva: ISO, 2014.
[28] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 259.
YANG S M, TAO W Q.Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 259.
[29] 中央军委装备发展部. 运载器、上面级和航天器试验要求: GJB 1027A—2020[S]. 北京: 中国标准出版社, 2020.
Equipment Development Department of People's Republic of China Central Military Commission. Launcher, Upper Stage and Spacecraft Test Requirements: GJB 1027A— 2020[S]. Beijing: Standards Press of China, 2020.
PDF(2672 KB)

Accesses

Citation

Detail

Sections
Recommended

/